Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Microbiol ; 15: 1352378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426058

RESUMO

Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.

2.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030223

RESUMO

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.


Assuntos
Algoritmos , RNA , Animais , Humanos , RNA/genética , Metilação , Análise de Sequência de RNA
3.
Curr Biol ; 32(12): 2786-2795.e5, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35671755

RESUMO

Eukaryotic genomes can acquire bacterial DNA via lateral gene transfer (LGT).1 A prominent source of LGT is Wolbachia,2 a widespread endosymbiont of arthropods and nematodes that is transmitted maternally through female germline cells.3,4 The DNA transfer from the Wolbachia endosymbiont wAna to Drosophila ananassae is extensive5-7 and has been localized to chromosome 4, contributing to chromosome expansion in this lineage.6 As has happened frequently with claims of bacteria-to-eukaryote LGT, the contribution of wAna transfers to the expanded size of D. ananassae chromosome 4 has been specifically contested8 owing to an assembly where Wolbachia sequences were classified as contaminants and removed.9 Here, long-read sequencing with DNA from a Wolbachia-cured line enabled assembly of 4.9 Mbp of nuclear Wolbachia transfers (nuwts) in D. ananassae and a 24-kbp nuclear mitochondrial transfer. The nuwts are <8,000 years old in at least two locations in chromosome 4 with at least one whole-genome integration followed by rapid extensive duplication of most of the genome with regions that have up to 10 copies. The genes in nuwts are accumulating small indels and mobile element insertions. Among the highly duplicated genes are cifA and cifB, two genes associated with Wolbachia-mediated Drosophila cytoplasmic incompatibility. The wAna strain that was the source of nuwts was subsequently replaced by a different wAna endosymbiont. Direct RNA Nanopore sequencing of Wolbachia-cured lines identified nuwt transcripts, including spliced transcripts, but functionality, if any, remains elusive.


Assuntos
Wolbachia , Animais , Cromossomos , Drosophila/genética , Drosophila/microbiologia , Transferência Genética Horizontal , Genoma , Simbiose/genética , Wolbachia/genética
4.
PLoS Negl Trop Dis ; 15(10): e0009838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705823

RESUMO

The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.


Assuntos
Brugia/genética , Variação Genética , Cromossomo X/genética , Animais , Brugia/classificação , Aberrações Cromossômicas , Genoma Helmíntico
5.
Sci Rep ; 11(1): 15925, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354114

RESUMO

Library preparation for high-throughput sequencing applications is a critical step in producing representative, unbiased sequencing data. The iGenomX Riptide High Throughput Rapid Library Prep Kit purports to provide high-quality sequencing data with lower costs compared to other Illumina library kits. To test these claims, we compared sequence data quality of Riptide libraries to libraries constructed with KAPA Hyper and NEBNext Ultra. Across several single-source genome samples, mapping performance and de novo assembly of Riptide libraries were similar to conventional libraries prepared with the same DNA. Poor performance of some libraries resulted in low sequencing depth. In particular, degraded DNA samples may be challenging to sequence with Riptide. There was little cross-well plate contamination with the overwhelming majority of reads belong to the proper source genomes. The sequencing of metagenome samples using different Riptide primer sets resulted in variable taxonomic assignment of reads. Increased adoption of the Riptide kit will decrease library preparation costs. However, this method might not be suitable for degraded DNA.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise Custo-Benefício , DNA/genética , Metagenoma/genética , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos
6.
Genome Biol ; 22(1): 121, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926528

RESUMO

Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq/métodos , Transcriptoma , Animais , Eucariotos/genética , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Células Procarióticas/metabolismo , RNA/genética , RNA-Seq/normas , Curva ROC , Alinhamento de Sequência , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fluxo de Trabalho
7.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33768248

RESUMO

The newest generation of DNA sequencing technology is highlighted by the ability to generate sequence reads hundreds of kilobases in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have pioneered competitive long read platforms, with more recent work focused on improving sequencing throughput and per-base accuracy. We used whole-genome sequencing data produced by three PacBio protocols (Sequel II CLR, Sequel II HiFi, RS II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies of the bacteria Escherichia coli and the fruit fly Drosophila ananassae. In both organisms tested, Sequel II assemblies had the highest consensus accuracy, even after accounting for differences in sequencing throughput. ONT and PacBio CLR had the longest reads sequenced compared to PacBio RS II and HiFi, and genome contiguity was highest when assembling these datasets. ONT Rapid Sequencing libraries had the fewest chimeric reads in addition to superior quantification of E. coli plasmids versus ligation-based libraries. The quality of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for bacterial genome assembly or polishing eukaryotic genome assemblies, and an ONT-Illumina hybrid approach would be more cost-effective for many users. Genome-wide DNA methylation could be detected using both technologies, however ONT libraries enabled the identification of a broader range of known E. coli methyltransferase recognition motifs in addition to undocumented D. ananassae motifs. The ideal choice of long read technology may depend on several factors including the question or hypothesis under examination. No single technology outperformed others in all metrics examined.


Assuntos
Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Escherichia coli/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Bacteriano , Bactérias/genética , Tecnologia
8.
JAMA Pediatr ; 175(5): 529, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523121
9.
mSystems ; 6(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436511

RESUMO

Quantification tools for RNA sequencing (RNA-Seq) analyses are often designed and tested using human transcriptomics data sets, in which full-length transcript sequences are well annotated. For prokaryotic transcriptomics experiments, full-length transcript sequences are seldom known, and coding sequences must instead be used for quantification steps in RNA-Seq analyses. However, operons confound accurate quantification of coding sequences since a single transcript does not necessarily equate to a single gene. Here, we introduce FADU (Feature Aggregate Depth Utility), a quantification tool designed specifically for prokaryotic RNA-Seq analyses. FADU assigns partial count values proportional to the length of the fragment overlapping the target feature. To assess the ability of FADU to quantify genes in prokaryotic transcriptomics analyses, we compared its performance to those of eXpress, featureCounts, HTSeq, kallisto, and Salmon across three paired-end read data sets of (i) Ehrlichia chaffeensis, (ii) Escherichia coli, and (iii) the Wolbachia endosymbiont wBm. Across each of the three data sets, we find that FADU can more accurately quantify operonic genes by deriving proportional counts for multigene fragments within operons. FADU is available at https://github.com/IGS/FADUIMPORTANCE Most currently available quantification tools for transcriptomics analyses have been designed for human data sets, in which full-length transcript sequences, including the untranslated regions, are well annotated. In most prokaryotic systems, full-length transcript sequences have yet to be characterized, leading to prokaryotic transcriptomics analyses being performed based on only the coding sequences. In contrast to eukaryotes, prokaryotes contain polycistronic transcripts, and when genes are quantified based on coding sequences instead of transcript sequences, this leads to an increased abundance of improperly assigned ambiguous multigene fragments, specifically those mapping to multiple genes in operons. Here, we describe FADU, a quantification tool for prokaryotic RNA-Seq analyses designed to assign proportional counts with the purpose of better quantifying operonic genes while minimizing the pitfalls associated with improperly assigning fragment counts from ambiguous transcripts.

10.
BMC Genomics ; 22(1): 11, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407096

RESUMO

BACKGROUND: The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS: We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS: The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodes , Animais , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/veterinária , Genoma Bacteriano , Japão , Camundongos
11.
Microbiol Resour Announc ; 9(36)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883786

RESUMO

Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions.

12.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703831

RESUMO

The 13,647-bp complete mitochondrial genome of Mansonella perstans was sequenced and is syntenic to the mitochondrial genome of Mansonella ozzardi Phylogenetic analysis of the mitochondrial genome is consistent with the known phylogeny of ONC5 group filarial nematodes.

13.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616635

RESUMO

Brugia pahangi is a zoonotic parasite that is closely related to human-infecting filarial nematodes. Here, we report the nearly complete genome of Brugia pahangi, including assemblies of four autosomes and an X chromosome, with only seven gaps. The Y chromosome is still not completely assembled.

14.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616636

RESUMO

Lymphatic filariasis is a devastating disease caused by filarial nematode roundworms, which contain obligate Wolbachia endosymbionts. Here, we assembled the genome of wBp, the Wolbachia endosymbiont of the filarial nematode Brugia pahangi, from Illumina, Pacific Biosciences, and Oxford Nanopore data. The complete, circular genome is 1,072,967 bp.

15.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527783

RESUMO

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

16.
Nat Commun ; 11(1): 1964, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327641

RESUMO

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Assuntos
Evolução Molecular , Nematoides/genética , Infecções por Nematoides/parasitologia , Cromossomos Sexuais/genética , Animais , Brugia Malayi/genética , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Genoma Helmíntico/genética , Humanos , Masculino , Nematoides/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Processos de Determinação Sexual/genética
17.
Genome Med ; 12(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915075

RESUMO

BACKGROUND: Plasmodium falciparum (Pf) whole-organism sporozoite vaccines have been shown to provide significant protection against controlled human malaria infection (CHMI) in clinical trials. Initial CHMI studies showed significantly higher durable protection against homologous than heterologous strains, suggesting the presence of strain-specific vaccine-induced protection. However, interpretation of these results and understanding of their relevance to vaccine efficacy have been hampered by the lack of knowledge on genetic differences between vaccine and CHMI strains, and how these strains are related to parasites in malaria endemic regions. METHODS: Whole genome sequencing using long-read (Pacific Biosciences) and short-read (Illumina) sequencing platforms was conducted to generate de novo genome assemblies for the vaccine strain, NF54, and for strains used in heterologous CHMI (7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia). The assemblies were used to characterize sequences in each strain relative to the reference 3D7 (a clone of NF54) genome. Strains were compared to each other and to a collection of clinical isolates (sequenced as part of this study or from public repositories) from South America, sub-Saharan Africa, and Southeast Asia. RESULTS: While few variants were detected between 3D7 and NF54, we identified tens of thousands of variants between NF54 and the three heterologous strains. These variants include SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors (such as PfAP2-L and PfAP2-G) and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection. Additionally, these variants directly contributed to diversity in immunologically important regions of the genomes as detected through in silico CD8+ T cell epitope predictions. Of all heterologous strains, NF135.C10 had the highest number of unique predicted epitope sequences when compared to NF54. Comparison to global clinical isolates revealed that these four strains are representative of their geographic origin despite long-term culture adaptation; of note, NF135.C10 is from an admixed population, and not part of recently formed subpopulations resistant to artemisinin-based therapies present in the Greater Mekong Sub-region. CONCLUSIONS: These results will assist in the interpretation of vaccine efficacy of whole-organism vaccines against homologous and heterologous CHMI.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/genética , Plasmodium falciparum/imunologia , Polimorfismo Genético , Linfócitos T CD8-Positivos/imunologia , Ensaios Clínicos como Assunto/estatística & dados numéricos , Genoma de Protozoário , Humanos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/genética
18.
Microb Genom ; 6(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851607

RESUMO

As sequencing read length has increased, researchers have quickly adopted longer reads for their experiments. Here, we examine 14 pathogen or host-pathogen differential gene expression data sets to assess whether using longer reads is warranted. A variety of data sets was used to assess what genomic attributes might affect the outcome of differential gene expression analysis including: gene density, operons, gene length, number of introns/exons and intron length. No genome attribute was found to influence the data in principal components analysis, hierarchical clustering with bootstrap support, or regression analyses of pairwise comparisons that were undertaken on the same reads, looking at all combinations of paired and unpaired reads trimmed to 36, 54, 72 and 101 bp. Read pairing had the greatest effect when there was little variation in the samples from different conditions or in their replicates (e.g. little differential gene expression). But overall, 54 and 72 bp reads were typically most similar. Given differences in costs and mapping percentages, we recommend 54 bp reads for organisms with no or few introns and 72 bp reads for all others. In a third of the data sets, read pairing had absolutely no effect, despite paired reads having twice as much data. Therefore, single-end reads seem robust for differential-expression analyses, but in eukaryotes paired-end reads are likely desired to analyse splice variants and should be preferred for data sets that are acquired with the intent to be community resources that might be used in secondary data analyses.


Assuntos
Aspergillus/genética , Bactérias/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Ixodes/genética , Animais , Análise Custo-Benefício , Cães , Perfilação da Expressão Gênica/economia , Humanos , Camundongos , RNA-Seq , Transcriptoma
19.
mSystems ; 4(6)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796568

RESUMO

To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis.IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.

20.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649084

RESUMO

Here, we present the complete genome sequence of the Wolbachia endosymbiont wAna, isolated from Drosophila ananassae and derived from Oxford Nanopore and Illumina sequencing. We anticipate that this will aid in Wolbachia comparative genomics and the assembly of D. ananassae specifically in regions containing extensive lateral gene transfer events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...